Question			Answer	Mark	Guidance
1	(a)	(i)	fins; streamlining / streamlined shape ;	1 max	Mark the first answer. If the answer is correct and another answer is given that is incorrect or contradicts the original answer, then $=\mathbf{0}$ marks ACCEPT reasonable attempt to describe streamlined shape ACCEPT aerodynamic ACCEPT articulated / flexible , spine
1	(a)	(ii)	eyes on top of head;	1	Mark the first answer. If the answer is correct and a further answer is given that is incorrect or contradicts the correct answer then $\mathbf{= 0}$ marks ACCEPT the position of the eyes / eyes that can see above IGNORE eyes facing forward IGNORE fin IGNORE eyes close together IGNORE refs to shape
1	(b)		1 (cellulose) cell wall ; 2 chloroplast(s); 3 (large / permanent) vacuole ; 4 starch granules ;	2	Mark the first answer on each prompt line. If the answer is correct and another answer is given that is incorrect or contradicts the original answer, then = $\mathbf{0}$ marks 2 CREDIT plastids / dictysomes / many small Golgi 3 IGNORE chlorophyll 3 CREDIT tonoplast 4 CREDIT druses / raphides / crystalline inclusions / Ca oxalate

Question		Answer	Mark	Guidance
1	(c)	1 (similarities / differences in) genes / genetics / DNA / RNA / molecules / biochemistry ; 2 (similarities / differences in) nucleotide / base, sequence / order ; 3 (similarities / differences in) cytochrome c / haemoglobin / ATP synthase / RNA polymerase; 4 (similarities / differences in) sequence / order, of amino acids (in proteins) ; 5 idea that similarities between any of the above implies (close) relationship ; ora	5 max	1 ACCEPT molecular / biochemical evidence 5 CREDIT if their genes are similar they must share a recent common ancestor 5 AWARD as a general statement or with an example, e.g. 'chimps and humans share large proportion of DNA and this means that they are related gets mp 1 and 5 . 'Chimps and humans are closely related' $=0$ marks unless linked to a marking point from 1-4.
		6 idea of evolution within human history ; 7 similarities in / differences in / comparison of , embryology / morphology / anatomy / physiology / behaviour ;		6 CREDIT in the context of an example of evolution in action, e.g. MRSA resistance to antibiotics or as a general statement 6 CREDIT selective breeding (artificial selection) example 7 CREDIT e.g. similar finches occupying different niches on neighbouring Galapagos islands 7 CREDIT e.g. vertebrate pentadactyl limb etc. 7 ACCEPT idea of vestigial organs; 7 IGNORE appearance / features / adaptations
		QWC ; One mark from 1-4 and 1 mark from 6-7	1	Marking point 5 is not part of QWC
			6	
		Total	10	

Question			Answer	Mark	Guidance
2	(a)		characteristics / features / AW , are passed on to / inherited (by the next generation) ;	1	IGNORE genes / alleles / DNA as question asks about Darwin's conclusion ACCEPT 'appearance' for features DO NOT CREDIT answers that only refer to beneficial characteristics (as Darwin's other observations would need to be considered to arrive at this conclusion)
2	(b)		1 B and C and D are more closely related (to each other than to A) ; ora 2 idea that A is in different (taxonomic) group (from other 3) ; ora 3 B and C and D, share more, recent common ancestor ; 4 phylogeny / evolution, of B and C and D diverged at same point ; ora	2 max	IGNORE references to relationship with organism (1) 1 IGNORE ' B, C and D are more similar' as this could refer to appearance rather than relationship 2 CREDIT named taxonomic group 3 IGNORE genes etc.
2	(c)		fits evidence ; idea of more, evidence / research (since nineteenth century) ;	1 max	CREDIT examples, e.g. DNA revolution / more fossils ACCEPT improved technology / molecular evidence IGNORE 'the theory has been proved' IGNORE Darwin provided more evidence ACCEPT changes in religious belief
2	(d)	(i)	code for (one or more) polypeptide(s) ;	1	ACCEPT protein IGNORE amino acid sequence

Question			Answer	Mark	Guidance
2	(d)	(ii)	1 double stranded; 2 each / both (strands) act as template; 3 hydrogen bonds, easily, break / form, between bases ; 4 complementary (specified) base , pairing / AW ; 5 purine (only able to) bind to pyrimidine ; 6 (due to) different sizes of purines and pyrimidines ; 7 hydrogen bonding different between A \& T and C \& G or 3 H bonds between C \& G and 2 H bonds between A \& T;	5 max	AWARD marks from clearly annotated diagram 1 ACCEPT double helix or two , polynucleotides / strands / chains or antiparallel strands 1 IGNORE one old and one new strand 2 IGNORE either NOTE 'there are 2 strands which act as templates' = 2 marks (mp 1 and 2) 3 ACCEPT weak H bonds between bases break 3 IGNORE refs to H bonds, breaking / forming, without qualification that the bonds are weak or , form / break, easily 4 IGNORE complementary nucleotides unless qualified with examples of base-pairing 7 ACCEPT names of bases with phonetic spellings 7 DO NOT CREDIT thyamine 7ACCEPT $A=T$ and $C \equiv G$ without reference to hydrogen bonds

Question		Answer	Mark	Guidance	
$\mathbf{2}$	(e)	(i)	speciation;	1	
$\mathbf{2}$	(e)	(ii)	idea that different islands have different , selection pressures / habitats / environments / vacant niches; ora idea of isolation ; ora	1 max	CREDIT 'the Galapagos have a wider range of habitats' IGNORE islands have different habitat(s) from the mainland e.g. the islands are separated from the mainland / no gene flow / geographic barrier / reproductive barrier ACCEPT allopatric (speciation) IGNORE sympatric

Question			Expected Answer	Mark	Additional Guidance
3	(a)	(i)	discontinuous gender / male and female / eye colour ; continuous size / length / mass ;	2	Mark the first answer on each prompt line. If an additional answer is given that is incorrect or contradicts the correct answer, then $\mathbf{= 0}$ marks Note: Suggestions must relate to visible characteristics of the frogs, ACCEPT sex IGNORE skin colour (as stated in Q) CREDIT example of a measurable characteristic (e.g. leg length, surface area, height, weight)
3	(a)	(ii)	idea of 1 no / little, environmental effect for , (named example of) discontinuous variation / example given for discontinuous variation in (i) as ecf ; 2 some / large, environmental effect for, (named example of) continuous variation / example given for continuous variation in (i) as ecf ; 3 gender may be affected by, temperature / atrazine exposure ;	2	IGNORE examples of environmental factors ACCEPT discontinuous variation is only, genetic / due to alleles present Note: A comparative statement (e.g. ' environment has a greater effect on continuous variation') $=\mathbf{2}$ marks (mps $1 \& 2$) e.g ' no environment effect for discontinuous variation but it does affect continuous variation' = $\mathbf{2}$ marks (mps1 \&2)

| Question | | Expected Answer | Mark | $\begin{array}{c}\text { Additional Guidance }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ | (c) | (i) | | $\begin{array}{l}\text { Note that the question refers to the use of cloned } \\ \text { or uncloned mice in testing - and NOT to humans. } \\ \text { ACCEPT ora throughout }\end{array}$ |
| IGNORE large numbers of clones produced | | | | |
| IGNORE ref to animal welfare / religious objections | | | | |
| IGNORE ref to validity | | | | |$]$

Question			Expected Answer		Mark	Additional Guidance
3	(c)	(ii)	1 idea to produce, e 2 idea to save / prese 3 grow / produce (sp 4 AVP;	, animals ; angered animals ; cells / tissues / organs ;	2	IGNORE ref research into disease (as given in Q) IGNORE ref to cost 1 ACCEPT example / desirable characteristics 2 ACCEPT recreating extinct animals 3 ACCEPT ref to named example of , tissue / organ 4 e.g. pet cloning / cloning GM animals / animals for xenotransplantation
3	(d)		Individuals David and John Anne and Lisa Sarah and Lisa	$\%$ 100 of alleles shared 50 50	3	Mark the first answer in each box. If an additional answer is given that is incorrect or contradicts the correct answer, then = $\mathbf{0}$ marks
				Total	17	

Question				Answer	Marks	Guidance
4	(a)	(i)	idea of if one susceptible to, this / the disease, all likely to be ;		1	DO NOT CREDIT if the response is referring to diseases in general
4	(a)	(ii)	1 2 3 4 5	environment / environmental factor ; (variation in) weather conditions / temperature ; rainfall / soil water content ; soil , (named) mineral / nitrate , content / AW ; (named) biotic factor (might vary) ;	2	2 ACCEPT climate 3 IGNORE 'availability of water' unqualified 4 IGNORE nutrient 4 ACCEPT mineral availability / amount of fertiliser added 5 e.g. number of pests / competition from other plants / disease
	(a)	(iii)	mutation ;		1	ACCEPT deletion etc. IGNORE (named) mutagenic agent

Question		Answer		Marks	Guidance
4	(b)	1	cross / breed, with disease resistant variety ;	6	If a candidate describes resistance as immunity
					DO NOT CREDIT the first time it is seen but apply ECF thereafter
					1 ACCEPT make two disease resistant individuals reproduce 1 IGNORE crossbreed two best individuals
		2	method to test offspring for disease resistance ;		2 ACCEPT general statement or example e.g: 'germinate seeds, expose to disease, see if die'
		3	select , best offspring / offspring with resistance ;		3 ACCEPT seeds / tubers / potatoes 3 IGNORE children / babies
		4	(inter)breed, offspring with resistance / best offspring ;		
		5	(continue process) for (many) generations ;		5 IGNORE many years
		6	idea of avoid breeding, closely related / AW , individuals to preserve genetic diversity ; ora		6 ACCEPT avoid , inbreeding / inline breeding 6 ACCEPT 'maintain genetic diversity by breeding with plants from different field / area' 6 ACCEPT breed with different varieties to widen the gene poo
		7	(regularly back) cross with, wild variety ;		
		8	idea of preserving rare varieties in case they are needed in the future ;		8 ACCEPT use of seed bank to preserve range of alleles
		9	AVP ;		9 e.g, ref. to marker assisted selection / detail of pollination method / prevention of self-pollination / asexual reproduction of desired variety
			NC ;	1	Award if the answer has been given one mark from marking points 1-5 and one mark from marking points 6-8
			Total	11	

Question		Answer		Marks	Guidance
$\mathbf{5}$	(a)				

Question		Answer	Marks	Guidance
5	(c)	too small to see ; (unable to see them) until invention of microscope / development of suitable viewing apparatus / AW; only 0.3 mm in length;	2	'can only be seen under microscope' = 1 mark (mp1) IGNORE 'can't see it' without the idea of size, e.g. can't see it clearly $\mathbf{=} \mathbf{0}$ marks, can't see its features $=\mathbf{0}$ marks ACCEPT implication of being too small to see, e.g. 'you need a microscope to see them' = mp1 'people couldn't see them in the past because we didn't have microscopes' $=\mathbf{2 m a r k s}(\mathbf{m p} 1$ and $\mathbf{m p 2}$) IGNORE type of microscope if stated ACCEPT 'magnifying glass' ACCEPT $\pm 0.1 \mathrm{~mm}$
		Total	10	

